

Time-series,
Spring, 2026

Stationarity – Unit Root Tests – Differencing – AR / MA / ARMA models (Cont.)

*Faculty of DS & AI
Spring semester, 2026*

Trong-Nghia Nguyen

Content

- ARMA Models
- ACF & PACF for Model Selection

Content

- ARMA Models
- ACF & PACF for Model Selection

ARMA Models

ARMA (p, q) Model

- ARMA combines:
 - Autoregressive (AR): dependence on past values
 - Moving Average (MA): dependence on past shocks
- Designed for stationary time series

Mathematical form:

$$x_t = c + \sum_{i=1}^p \phi_i x_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t$$

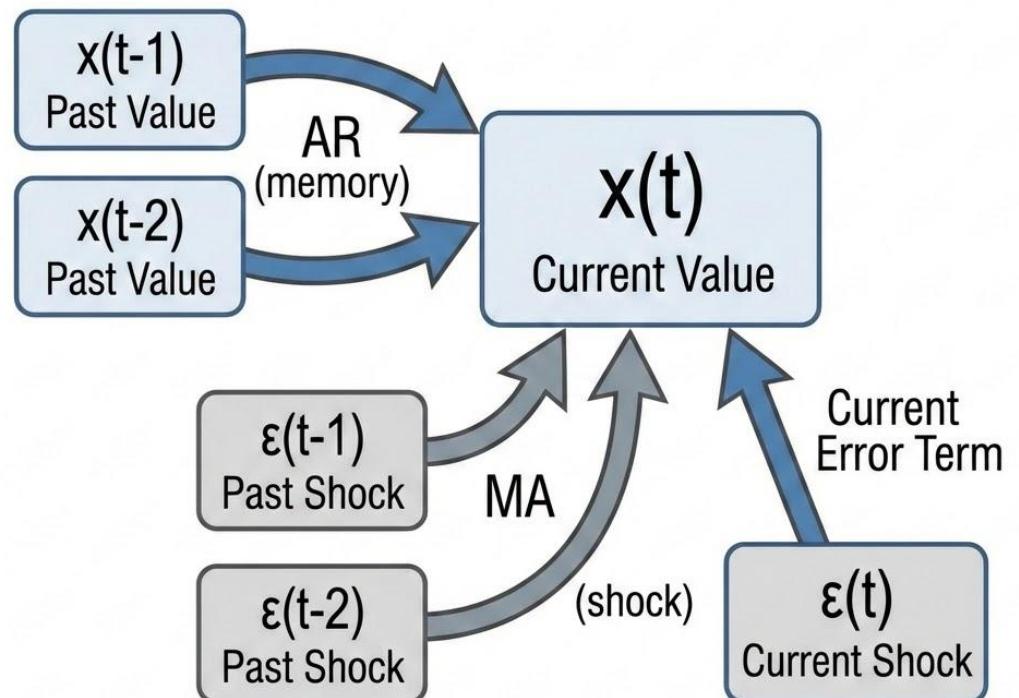
Where:

- ϕ_i : AR coefficients (memory)
- θ_j : MA coefficients (shock effects)
- ε_t : white noise

Key idea:

ARMA captures both **persistence** and **short-term disturbances** in a time series.

ARMA (AutoRegressive Moving Average) Time Series Model



$$x(t) = \alpha + \varphi_1 x(t-1) + \varphi_2 x(t-2) + \theta_1 \varepsilon(t-1) + \theta_2 \varepsilon(t-2) + \varepsilon(t)$$

ARMA Models

ARMA (p, q) Model

```
from statsmodels.tsa.arima.model import ARIMA

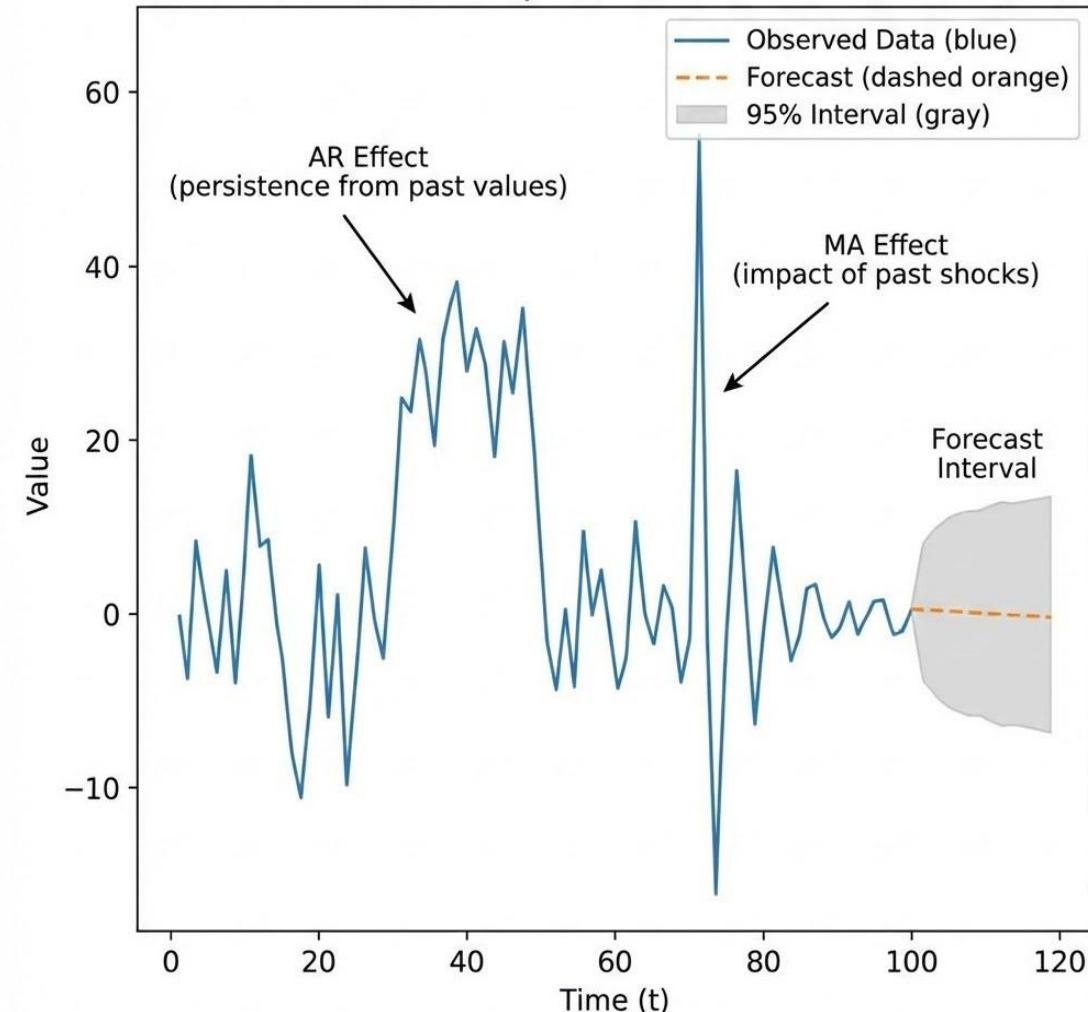
# ARMA(p, q) = ARIMA(p, 0, q)
model = ARIMA(ts_diff, order=(1, 0, 1))
result = model.fit()

print(result.summary())
```

```
SARIMAX Results
=====
Dep. Variable: SUNACTIVITY No. Observations: 308
Model: ARIMA(1, 0, 1) Log Likelihood: -1358.256
Date: Mon, 02 Feb 2026 AIC: 2724.512
Time: 06:50:32 BIC: 2739.432
Sample: 0 HQIC: 2730.478
Covariance Type: opg
=====
            coef  std err      z  P>|z|  [0.025  0.975]
const  -0.0057  2.716  -0.002  0.998  -5.328  5.317
ar.L1   0.4078  0.074   5.527  0.000   0.263  0.552
ma.L1   0.2042  0.081   2.515  0.012   0.045  0.363
sigma2  395.7234 24.175  16.369  0.000  348.342 443.105
=====
Ljung-Box (L1) (Q): 0.23  Jarque-Bera (JB): 32.93
Prob(Q): 0.63  Prob(JB): 0.00
Heteroskedasticity (H): 1.78  Skew: 0.10
Prob(H) (two-sided): 0.00  Kurtosis: 4.59
=====
```

- Refer [code example 2](#)

ARMA Time Series Example: Observed Data and Forecast



ARMA Models

ARMA (p, q) Model

SARIMAX Results						
Dep. Variable:	SUNACTIVITY	No. Observations:	308			
Model:	ARIMA(1, 0, 1)	Log Likelihood	-1358.256			
Date:	Mon, 02 Feb 2026	AIC	2724.512			
Time:	06:50:32	BIC	2739.432			
Sample:	0 - 308	HQIC	2730.478			
Covariance Type:	opg					
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105
Ljung-Box (L1) (Q):	0.23	Jarque-Bera (JB):		32.93		
Prob(Q):	0.63	Prob(JB):		0.00		
Heteroskedasticity (H):	1.78	Skew:		0.10		
Prob(H) (two-sided):	0.00	Kurtosis:		4.59		

The larger (less negative) → the better the pattern

ARMA Models

ARMA (p, q) Model

SARIMAX Results						
Dep. Variable:	SUNACTIVITY	No. Observations:	308			
Model:	ARIMA(1, 0, 1)	Log Likelihood	-1358.256			
Date:	Mon, 02 Feb 2026	AIC	2724.512			
Time:	06:50:32	BIC	2739.432			
Sample:	0	HQIC	2730.478			
	- 308					
Covariance Type:	opg					
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105
Ljung-Box (L1) (Q):			0.23	Jarque-Bera (JB):	32.93	
Prob(Q):			0.63	Prob(JB):	0.00	
Heteroskedasticity (H):			1.78	Skew:	0.10	
Prob(H) (two-sided):			0.00	Kurtosis:	4.59	

Model selection criteria. **Penalize** multi-parameter models.

Purpose: Choose a model that fits the data well without being too complex.

ARMA Models

Model Selection Criteria

AIC – Akaike Information Criterion

$$AIC = -2 \log(L) + 2k$$

- L : likelihood of the model
- k : number of parameters
- Light penalty on complexity
- Focus on **prediction performance**

Criterion	Penalty Strength	Model Preference
AIC	Light	More complex
HQIC	Medium	Balanced
BIC	Strong	Simpler

BIC – Bayesian Information Criterion

$$BIC = -2 \log(L) + k \log(n)$$

- n : number of observations
- Stronger penalty for complex models
- Prefers **simpler models**

👉 Lower value = better model

HQIC – Hannan–Quinn Information Criterion

$$HQIC = -2 \log(L) + 2k \log(\log(n))$$

- Penalty between AIC and BIC
- Less commonly used

Exercise 1: Review [code example 2](#) and compare AR, MA, and ARMA models for these 4 criterions.

ARMA Models

AR & MA coefficients

SARIMAX Results						
Dep. Variable:	SUNACTIVITY	No. Observations:	308			
Model:	ARIMA(1, 0, 1)	Log Likelihood	-1358.256			
Date:	Mon, 02 Feb 2026	AIC	2724.512			
Time:	06:50:32	BIC	2739.432			
Sample:	0 - 308	HQIC	2730.478			
Covariance Type:	opg					
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105
Ljung-Box (L1) (Q):	0.23	Jarque-Bera (JB):	32.93			
Prob(Q):	0.63	Prob(JB):	0.00			
Heteroskedasticity (H):	1.78	Skew:	0.10			
Prob(H) (two-sided):	0.00	Kurtosis:	4.59			

AR & MA coefficients

Testing on residuals

ARMA Models

AR & MA coefficients

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105

Variance of white noise

ARMA Models

AR & MA coefficients

Statistically significant (p-value = 0.000 < 0.05)

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105

The value at time t is influenced by approximately 40% from the value at t-1.

ARMA Models

AR & MA coefficients

Statistically significant (p-value = 0.012 < 0.05)

	coef	std err	z	P> z	[0.025	0.975]
const	-0.0057	2.716	-0.002	0.998	-5.328	5.317
ar.L1	0.4078	0.074	5.527	0.000	0.263	0.552
ma.L1	0.2042	0.081	2.515	0.012	0.045	0.363
sigma2	395.7234	24.175	16.369	0.000	348.342	443.105

Errors from the past are still affecting the present.

Content

- ARMA Models
- ACF & PACF for Model Selection

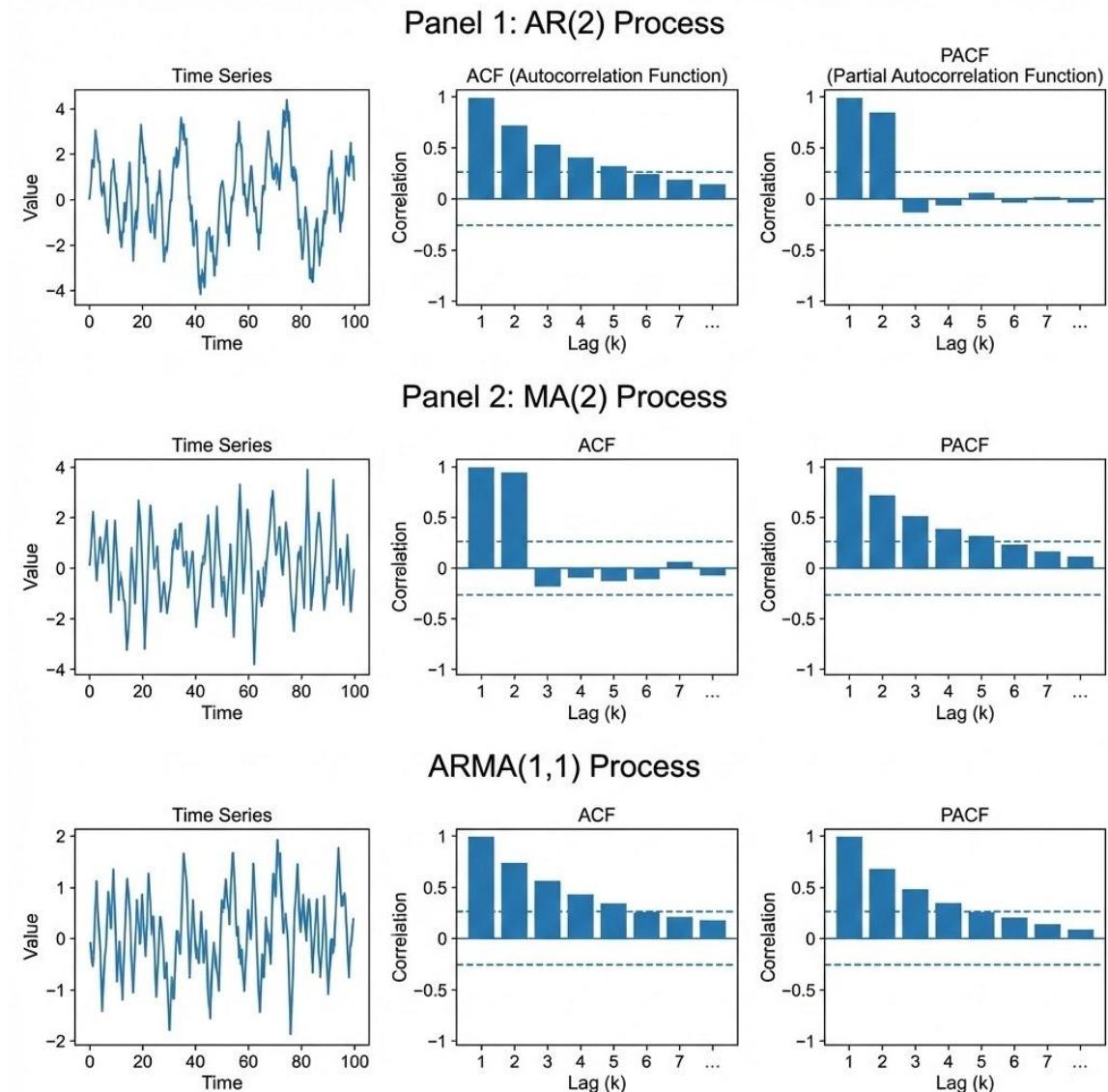
ACF & PACF for Model Selection

ACF & PACF

- Help identify **AR vs MA structure**
- Guide selection of **p** and **q**
- Based on **correlation patterns**, not optimization

Key intuition

- **ACF**: correlation between x_t and x_{t-k}
- **PACF**: *direct* correlation between x_t and x_{t-k} , removing effects of intermediate lags



ACF & PACF for Model Selection

ACF & PACF

What are p and q?

- **p**: order of **Autoregressive (AR)** part
→ number of past values (memory)
- **q**: order of **Moving Average (MA)** part
→ number of past shocks (errors)

What does "cut-off" mean?

- **Cut-off**: correlations are significant only up to a certain lag, then suddenly drop to zero
- **Decay**: correlations decrease gradually over many lags

Model identification rules

Model	ACF pattern	PACF pattern
AR(p)	Decay	Cut-off at lag p
MA(q)	Cut-off at lag q	Decay
ARMA(p, q)	Decay	Decay

Practical rule of thumb

Use PACF → choose p
Use ACF → choose q

ACF & PACF for Model Selection

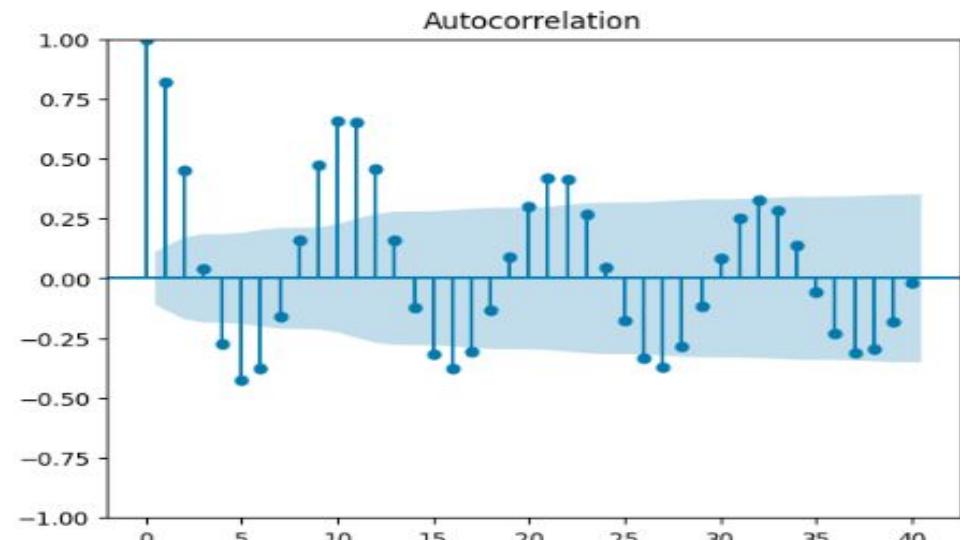
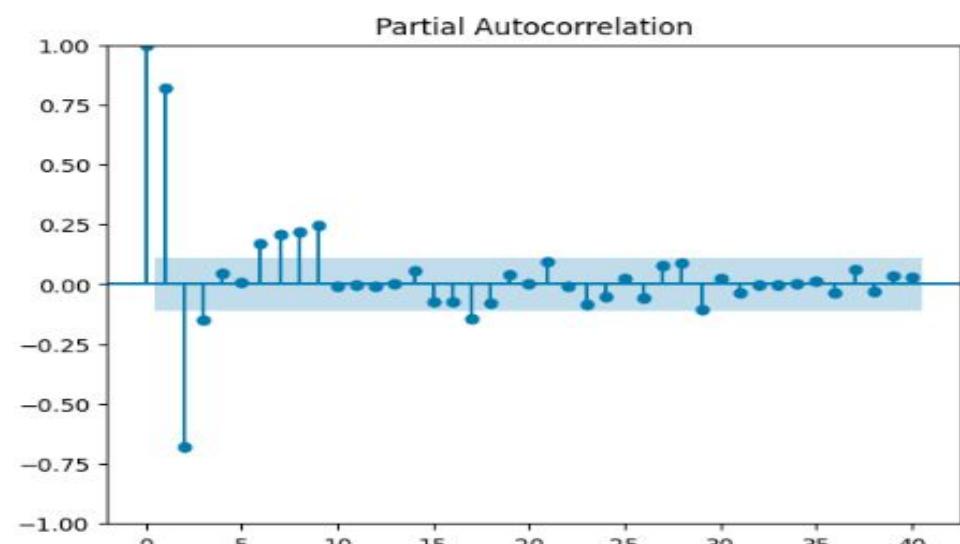
ACF & PACF

```
import matplotlib.pyplot as plt
from statsmodels.datasets import sunspots
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# Load dataset
data = sunspots.load_pandas().data
ts = data['SUNACTIVITY']

# Plot time series
ts.plot(title="Sunspots Time Series", figsize=(6,3))
plt.show()

# ACF & PACF
plot_acf(ts, lags=40)
plot_pacf(ts, lags=40, method='ywm')
plt.show()
```



ACF & PACF for Model Selection

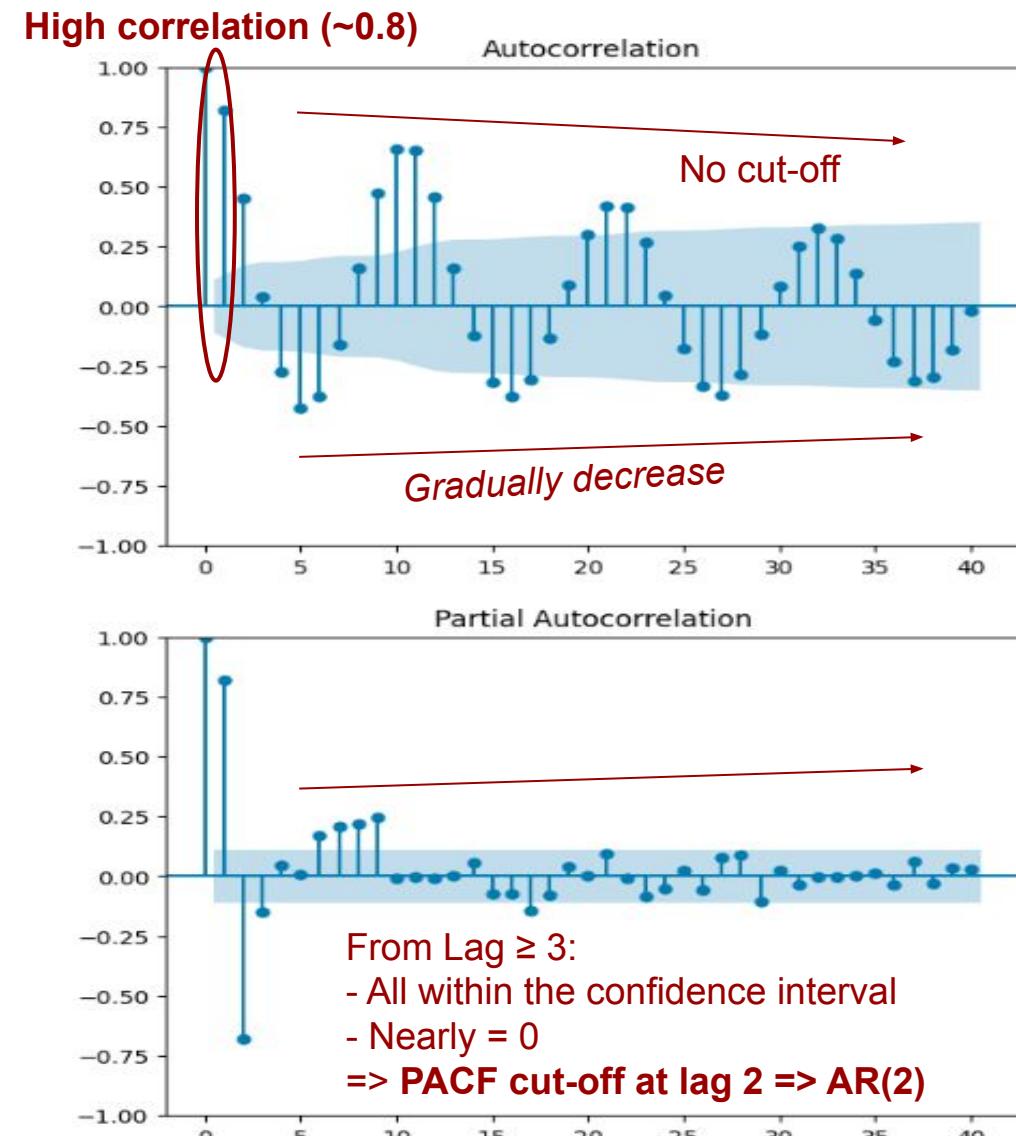
ACF & PACF

```
import matplotlib.pyplot as plt
from statsmodels.datasets import sunspots
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# Load dataset
data = sunspots.load_pandas().data
ts = data['SUNACTIVITY']

# Plot time series
ts.plot(title="Sunspots Time Series", figsize=(6,3))
plt.show()

# ACF & PACF
plot_acf(ts, lags=40)
plot_pacf(ts, lags=40, method='ywm')
plt.show()
```



Thank you